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Introduction 

Calculus is the mathematical study of how different factor or variable change. Calculus is 

used for many different things like creating models to arrive at an optimal solution, in a lot 

of concepts in physics like motion, harmonics, astronomy, etc and in computer soft wares 

like Google Earth.  

Personal engagement: When studying the IB Mathematics HL syllabus, I became privy to the 

concepts of calculus. I saw myself applying these concepts in other subjects like physics. I 

was very easily able to relate to the different concepts and applications of calculus in 

physics. I started using my skills of calculus of finding the gradient and area in economics as 

well. I wanted to see how well I could take these concepts beyond the walls of my classroom 

and implement them in my IA. 

When I was a kid, I saw the movie Madagascar 2 and I also had the chance of visiting the 

beautiful island of Madagascar. I really love to travel to different countries of the world and 

explore each and every corner of the country. I tried to find the area of Madagascar using 

integration in order to know how big Madagascar is so I know how much area I would have 

to cover in order to travel around Madagascar. However, it is not possible to find the area of 

a closed curve using normal integration. So I used Green’s Theorem to find the area to the 

closed curve. Through this paper I was able to calculate the area of Madagascar. 

Rationale 

In Mathematics, Green’s theorem shows the relationship between the line integral of a 

closed curve and the double integral of the area D bounded within the closed curve. The 

theorem is named after George Green, who first suggested the theorem. It was first proved 

by Bernhard Riemann. Green’s theorem is one of the theories of Calculus. In this IA, I have 

modelled the boundary of the Madagascar and then using Green’s theorem the approximate 

area of the island has been found. The exploration helps check the accuracy of the area. This 

is to check whether I got a similar value to the actual area. Also the concept goes beyond the 

syllabus of IB Mathematics HL helping me to learn to calculate line integrals.  

Methodology 
This paper is carried out using 4 steps. These steps are 

regression, integration, using Green’s theorem and 

scaling. First points were plot throughout the boundary 

of the map of Madagascar and using these points two 

lines of best fit were modelled. This is called regression. 

Then using Integration, the area between the two 

curves was found. Green’s theorem was then used to 

find the area between the closed curve, which was 

modelled using regression in the first step. Finally, the 

map was scaled to an area with appropriate units. 

Regression  

This is the map that was uploaded on GeoGebra, where regression was used in order to 

model a curve around the boundary of the map. 

https://en.wikipedia.org/wiki/Bernhard_Riemann
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The map is in the shape of a rectangle and 
its dimension when put on the grid were 
5.55 units x 4.52 units. When modelling 
the map using regression, the map was 
divided into 2 parts (the upper half and 
the lower half). Points were plotted on 
the boundary of the map to model the 
two curves. The 2 tables on the left show 
the points plotted to form the 2 curves. 
Though the original map of Madagascar is 
actually vertical, I had to take the map 
horizontally so the two modelled curves 
would follow the vertical line test (This is a 
test used to see if a curve or a function is 
function. This is done by visually 
examining how many times the vertical 
line intersects with the curve. If there is 
only one intersection, then the curve is a 
function). Various equations were tried in 
order to find the most accurate curve that 
model the upper and lower region’s 
boundary.  
Table 1 consists of all the points that were 

placed on the boundary of the upper 

region. 32 points were plotted on the 

upper region for the purpose of accuracy 

so the most accurate line of best fit can be 

modelled.  

Table 2 consists of all points that were placed on the boundary of the 

lower region. 24 points are plotted around the lower region. This is 8 

points lower than the upper region because of the topological 

imbalance between the upper and the lower region. 

Upper Curve 

X1 Y1 
0.156367 1.483868 

0.337 1.822 

0.5627 1.969 

0.7434 2.0596 

1 2 

1.18137 2.1047 

1.4094 2.20639 

1.623 2.1612 

1.8384 2.0709 

2 2 

2.1433 1.8902 

2.3465 1.777 

2.5836 1.7999 

2.8093 1.8677 

3.001 1.8677 

3.1932 1.93544 

3.3738 1.93544 

3.5319 1.82255 

3.71255 1.777 

3.8141 1.63063 

3.9044 1.4725 

3.9835 1.3032 

4 1.1 

4.13026 0.98713 

4.2431 0.82907 

4.3786 0.70489 

4.5028 0.5807 

4.7398 0.53555 

4.9431 0.3887 

5.0447 0.2081 

5.2479 0.1742 

5.40597 0.095262 

Lower Curve 

X2 Y2 
0.156367 1.483868 

0.2349 1.2825 

0.34422 1.0503 

0.3988 0.8454 

0.6174 0.7634 

0.8359 0.68152 

1.04089 0.59956 

1.2867 0.544922 

1.4916 0.49028 

1.6829 0.40831 

1.9288 0.3536 

2.14737 0.25805 

2.3659 0.21707 

2.5845 0.14877 

2.8167 0.0804 

3 0 

3.2538 -0.0561 

3.4997 -0.0561 

3.7592 -0.16541 

4.05981 -0.3566 

4.4149 -0.3156 

4.7564 -0.23371 

5.1116 -0.138 

5.40597 0.095262 
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The points that were plotted in the Table 1 and Table 2 could model various number of 

equations with many different number of polynomials. However, the R2 value was greatest 

with x6. R² = 0.96755128 for the curve modelled by points in Table 1 and R² = 0.99060068 for the 

curve modelled by points in Table 2. The R2 value denotes how accurate the line of best fit was made 

using the modelling points in Table 1 and Table 2. The R2 in this case also denotes the complex 

topology of the upper boundary of the island making it difficult to find a line of best fit. 

Figure 2 and 3 shows how the points were plotted on the boundary of Madagascar to model the two 
curves.  
 

 
The graph above shows the line of best fit of all the points in Table 1. The equation of the curve is: 
𝑓(𝑥) =  −0.0003𝑥6  +  0.0270𝑥5  −  0.3296𝑥4  +  1.5472𝑥3  −  3.3344𝑥2  +  3.1587𝑥 +  1.0494 

 

 
The graph above shows the line of best fit of all the points in Table 1. The equation of the curve is: 

𝑔(𝑥) = 0.0044𝑥6  −  0.0785𝑥5  +  0.5597𝑥4  −  1.9931𝑥3  +  3.6491𝑥2 −  3.4584𝑥 +  1.8932 
 
Both of the curves intersect at (0.176, 1.488) and (5.392,0.195). So a line passing through these 
points would divide the map into 2 parts. The equation for this line is: 

ℎ(𝑥) =  −0.2479𝑥 +  1.5314 

y = -0.0003x6 + 0.0270x5 - 0.3296x4 + 1.5472x3 - 3.3344x2 + 3.1587x + 1.0494
R² = 0.9676

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

Modeling of the upper curve

y = 0.0044x6 - 0.0785x5 + 0.5597x4 - 1.9931x3 + 3.6491x2 - 3.4584x + 1.8932
R² = 0.9906
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Modeling of the lower curve
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The above figure shows the modelling of the map of Madagascar. 
 

Integration 

To find the area between f(x) and g(x) 2 main step were carried out: 

Area of upper region of Madagascar 

The area of the upper region of Madagascar lies f(x) and h(x) between x vales 0.176 to 4.821. 

𝐴𝑈𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 = ∫ 𝑓(𝑥) 𝑑𝑥 − ∫ ℎ(𝑥)𝑑𝑥

4.821

0.176

4.821

0.176

 

∫ 𝑓(𝑥) 𝑑𝑥 =  ∫ [−0.0003𝑥6  +  0.0270𝑥5  −  0.3296𝑥4  +  1.5472𝑥3  −  3.3344𝑥2  

4.821

0.176

4.821

0.176

+  3.1587𝑥 +  1.0494] 𝑑𝑥 ≈ 10.1377 

∫ ℎ(𝑥) 𝑑𝑥 =  ∫ [−0.2479𝑥 +  1.5314]

4.821

0.176

4.821

0.176

 𝑑𝑥 ≈ 4.2497 

∴  𝐴𝑈𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 ≈ 10.1377 − 4.2497 ≈ 5.888 

Area of lower region of Madagascar 

The area of the upper region of Madagascar lies h(x) and g(x) between x vales 

0.176 to 5.392. However, there is a small area that lies between h(x) and f(x), 

which need to be subtracted to find the area of the lower region. The figure on the 

right indicates the small region. 

∴ 𝐴𝑛𝑒𝑡 𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 = ∴ 𝐴𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 − 𝐴𝑠𝑚𝑎𝑙𝑙 𝑎𝑟𝑒𝑎  

∴ 𝐴𝑛𝑒𝑡 𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 = [ ∫ ℎ(𝑥) 𝑑𝑥 − ∫ 𝑔(𝑥) 𝑑𝑥]

5.392

0.176

−

5.392

0.176

[ ∫ ℎ(𝑥) 𝑑𝑥 −  ∫ 𝑓(𝑥) 𝑑𝑥]

5.392

4.821

 

5.392

4.821

 

∫ ℎ(𝑥) 𝑑𝑥 =  ∫ [−0.2479𝑥 +  1.5314] 𝑑𝑥 ≈ 4.4029

5.392

0.176

5.392

0.176

 

A part of 𝑔(𝑥) is in the 4 quadrant so to calculate 𝐴𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛  we need to calculate ∫ 𝑔(𝑥)𝑑𝑥
5.392

0.176
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∫ 𝑔(𝑥)𝑑𝑥

5.392

0.176

= ∫ 𝑔(𝑥)

3.354

0.176

 𝑑𝑥 + ∫ 𝑔(𝑥)

5.202

3.354

 𝑑𝑥 + ∫ 𝑔(𝑥)

5.392

5.202

 𝑑𝑥 

∴ ∫ 𝑔(𝑥)

3.354

0.176

𝑑𝑥

= ∫ [0.0044𝑥6  −  0.0785𝑥5  +  0.5597𝑥4  −  1.9931𝑥3  +  3.6491𝑥2

3.354

0.176

−  3.4584𝑥 +  1.8932] 𝑑𝑥 ≈ 1.3269 

∴ ∫ 𝑔(𝑥)

5.202

3.354

𝑑𝑥

= ∫ [0.0044𝑥6  −  0.0785𝑥5  +  0.5597𝑥4  −  1.9931𝑥3  +  3.6491𝑥2

5.202

3.354

−  3.4584𝑥 +  1.8932] 𝑑𝑥 ≈ −0.7429 

Because ∫ 𝑔(𝑥)
5.202

3.354
𝑑𝑥 lies in the 4 Quadrant the answer is negative. However, we want to add the 

area so∫ 𝑔(𝑥)
5.202

3.354
𝑑𝑥 ≈ 0.7429 

∴ ∫ 𝑔(𝑥)

5.392

5.202

𝑑𝑥 = ∫ [0.0044𝑥6  −  0.0785𝑥5  +  0.5597𝑥4  −  1.9931𝑥3  +  3.6491𝑥2

5.392

5.202

−  3.4584𝑥 +  1.8932] 𝑑𝑥 ≈ 0.0723 

∴ ∫ 𝑔(𝑥)𝑑𝑥

5.392

0.176

= 1.3269 + 0.7429 + 0.0723 = 2.1421 

𝐴𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 =  4.4029 − 2.1421 = 2.2608 

Now I will be finding 𝐴𝑠𝑚𝑎𝑙𝑙 𝑎𝑟𝑒𝑎  

∫ ℎ(𝑥) 𝑑𝑥 =  ∫ [−0.2479𝑥 +  1.5314] 𝑑𝑥 ≈ 0.1531

5.392

4.821

5.392

4.821

 

∫ 𝑓(𝑥) 𝑑𝑥 =  ∫ [−0.0003𝑥6  +  0.0270𝑥5  −  0.3296𝑥4  +  1.5472𝑥3  −  3.3344𝑥2  

5.392

4.821

5.392

4.821

+  3.1587𝑥 +  1.0494] 𝑑𝑥 ≈ 0.3635 

𝐴𝑠𝑚𝑎𝑙𝑙 𝑎𝑟𝑒𝑎 = 0.1531 − 0.3635 = −0.2104 

∴ 𝐴𝑛𝑒𝑡 𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 ≈ 2.2608 − [−0.2104] ≈ 2.5712  

∴ 𝐴𝑡𝑜𝑡𝑎𝑙 ≈ 𝐴𝑈𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛  + 𝐴𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 ≈ 5.888 + 2.5712 ≈ 8.4592 𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡𝑠  

 

The Green’s theorem 
Green’s theorem shows the relationship between the line integral (A line integral or 

path integral is the integral of some function along a curve) of a closed curve and the double 

integral of the area D bounded within the closed curve 
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The Green’s theorem states that 

∮ 𝑅 𝑑𝑥 + 𝑆 𝑑𝑦 =  ∬
𝜕𝑆

𝜕𝑥
−

𝜕𝑅

𝜕𝑦
 𝑑𝑥 𝑑𝑦

𝐷𝑐

 

In the equation C is a simple closed curve. R and S denote functions of X and Y and they have 

a continuous partial derivative within the region D, which is enclosed in the closed curve C. 

The path of the integral is always counter clockwise, which is denoted by the symbol ∮c, 

when finding the integral of a closed curve. This symbol 𝜕 denotes partial derivative. 

 

The theorem may look very intimidating; this is 

because two theorems are written as one: 

 

∮ 𝑆 𝑑𝑦 =  ∬
𝜕𝑆

𝜕𝑥
 𝑑𝑥 𝑑𝑦

𝐷𝑐
                                      

∮ 𝑅 𝑑𝑥 =  − ∬
𝜕𝑅

𝜕𝑦
 𝑑𝑥 𝑑𝑦

𝐷𝑐
 

Proving Green’s theorem  

∮ 𝑅 𝑑𝑥 + 𝑆 𝑑𝑦 =  ∬
𝜕𝑆

𝜕𝑥
−

𝜕𝑅

𝜕𝑦
 𝑑𝑥 𝑑𝑦

𝐷𝑐

 

∴ ∮ 𝑅 𝑑𝑥 = − ∬
𝜕𝑅

𝜕𝑦
 𝑑𝑥 𝑑𝑦

𝐷𝑐

 

To prove Green’s theorem, I have solved the right hand side of equation using the figure 

above.  

∬ −
𝜕𝑅

𝜕𝑦
 𝑑𝑦 𝑑𝑥 =  ∫ ∫ −

𝜕𝑅

𝜕𝑦
 𝑑𝑦 𝑑𝑥

𝑟

𝑠

𝑞

𝑝
𝐷

 

∫ −
𝜕𝑅

𝜕𝑦
 𝑑𝑦 = 𝑅(𝑥, 𝑦)𝑠

𝑟 = −𝑅(𝑥, 𝑟) + 𝑅(𝑥, 𝑠)

𝑟

𝑠

 

∫ ∫ −
𝜕𝑅

𝜕𝑦
 𝑑𝑦 𝑑𝑥

𝑟

𝑠

𝑞

𝑝

=  ∫ 𝑅(𝑥, 𝑠) − 𝑅(𝑥, 𝑟)

𝑞

𝑝

 𝑑𝑥 

To prove Green’s theorem, I have solved the left hand side of equation using the figure 

above.  

∮ 𝑅 𝑑𝑥 =  ∫ 𝑅 𝑑𝑥 +  ∫ 𝑅 𝑑𝑥
𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑛𝑒

=  ∫ 𝑅(𝑥, 𝑠) 𝑑𝑥 + ∫ 𝑅(𝑥, 𝑟)

𝑝

𝑞

𝑞

𝑝

𝑑𝑥 =
𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑛𝑒𝑐

∫ 𝑅(𝑥, 𝑠) − 𝑅(𝑥, 𝑟)

𝑞

𝑝

 𝑑𝑥 

Hence proved that the right hand side is equal to the left hand side. 

p q 

r 

s 
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𝐿𝐻𝑆 = 𝑅𝐻𝑆 = ∫ 𝑅(𝑥, 𝑠) − 𝑅(𝑥, 𝑟)

𝑞

𝑝

 𝑑𝑥 

Green’s theorem example 

To explain Green’s theorem I will be evaluating the curve ∮ 𝑥𝑦2 𝑑𝑥 + 𝑥5𝑑𝑦
𝑐

 . C is a closed 

curve and is a rectangle. The rectangles vertices are (2,0), (2,4), (0,4), (0,0). 

C follows all the criterions of Green’s theorem. The 

orientation of C is counter clockwise and positive when 

plotted on the Cartesian equation above. 

When comparing the ∮ 𝑥𝑦2 𝑑𝑥 + 𝑥5𝑑𝑦
𝑐

 to the universal 

equation ∮ (𝑅 𝑑𝑥 +  𝑆 𝑑𝑦)
𝑐

, one can say that 

𝑅 = 𝑥𝑦2, 𝑆 = 𝑥5,
𝜕𝑅

𝜕𝑦
= 2𝑥𝑦 𝑎𝑛𝑑 

𝜕𝑆

𝜕𝑥
= 5𝑥4 

When substituting these values in ∬
𝜕𝑆

𝜕𝑥
−

𝜕𝑅

𝜕𝑦
 𝑑𝑥 𝑑𝑦

𝑐
 

∫ ∫
𝜕𝑆

𝜕𝑥
−

𝜕𝑅

𝜕𝑦
𝑑𝑥𝑑𝑦

2

0

4

0

=  ∫ ∫(5𝑥4 − 2𝑥𝑦) 𝑑𝑥𝑑𝑦

2

0

4

0

 

= ∫(𝑥5 − 𝑥2𝑦)0
2 𝑑𝑦 =  ∫(34 − 4𝑦) 𝑑𝑦 = 

4

0

 (32𝑦 − 2𝑦2)0
4

4

0

 

= 128 − 32 = 96 

Therefore, Green’s theorem helped link a complex line integral in terms of a simple double 

integral. 

Green’s theorem manipulation to find area of Madagascar 
Green’s theorem is generally used to change complex line integrals into simple or basic 

double integrals. However, another way to go about this is to change the double integral 

into a line integral. This helps us easily find the area of a closed curve 

∮(𝑅 𝑑𝑥 + 𝑄 𝑑𝑦) = ∬ (
𝜕𝑆

𝜕𝑥
−

𝜕𝑅

𝜕𝑦
)𝑑𝑥𝑑𝑦

𝐷𝑐

 

𝐿𝑒𝑡 𝑅 = 0 𝑎𝑛𝑑 𝑆 = 𝑥 

∮ 𝑥 𝑑𝑦 =  ∬
𝜕𝑥

𝜕𝑥
𝑑𝑥𝑑𝑦

𝐷𝐶

= ∬ 1 𝑑𝑥𝑑𝑦 = 𝐴
𝐷

 

∴ 𝐴 = ∮𝑥 𝑑𝑦
𝐶

 

A is the area of the closed curve C and has a line integral of x dy 

Similarly, 

𝐿𝑒𝑡 𝑅 = 0 𝑎𝑛𝑑 𝑆 = 𝑥 
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∮ 𝑦 𝑑𝑦 =  ∬ −
𝜕𝑦

𝜕𝑦
𝑑𝑥𝑑𝑦

𝐷𝐶

= − ∬ 1 𝑑𝑥𝑑𝑦 = 𝐴
𝐷

 

∴ 𝐴 = − ∮𝑦 𝑑𝑦
𝐶

 

A is the area of the closed curve C and has a negative line integral of y dy 

Then, if both A expressions are added one gets: 

∴ 2𝐴 = ∮𝑥 𝑑𝑦
𝐶

− ∮𝑦 𝑑𝑦
𝐶

  

𝐴 =
1

2
∮𝑥 𝑑𝑦

𝐶

− ∮𝑦 𝑑𝑦
𝐶

 

𝑨 =
𝟏

𝟐
∮(𝒙 𝒅𝒚 − 𝒚𝒅𝒙)

𝒄

 

Taking the Manipulated value to find the area 
To find the area of Madagascar using Green’s Theorem, the modelled equations were 

converted to parametric equations in terms of t. 

Converting f(x) (Upper curve of Madagascar) to a parametric equation 

𝑓(𝑥) =  −0.0003𝑥6  +  0.0270𝑥5  −  0.3296𝑥4  +  1.5472𝑥3  −  3.3344𝑥2  +  3.1587𝑥 +  1.0494
=  𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛  

𝐿𝑒𝑡 𝑥 = 𝑡 𝑎𝑛𝑑 𝑑𝑥 = 𝑑𝑡 
 

𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 = −0.0003𝑥6  +  0.0270𝑥5  −  0.3296𝑥4  +  1.5472𝑥3  −  3.3344𝑥2  +  3.1587𝑥 

+  1.0494 

𝑑𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛

𝑑𝑡
=  −0.0019𝑡5 + 0.1348𝑡4 − 1.3182𝑡3 + 4.6415𝑡2 − 6.6689𝑡 + 3.1587 

𝑑𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 = [−0.0019𝑡5 + 0.1348𝑡4 − 1.3182𝑡3 + 4.6415𝑡2 − 6.6689𝑡 + 3.1587] 𝑑𝑦 

Converting g(x) (Lower curve of Madagascar) to a parametric equation 

𝑔(𝑥) = 0.0044𝑥6  −  0.0785𝑥5  +  0.5597𝑥4  −  1.9931𝑥3  +  3.6491𝑥2 −  3.4584𝑥 +  1.8932 
 

𝐿𝑒𝑡 𝑥 = 𝑡 𝑎𝑛𝑑 𝑑𝑥 = 𝑑𝑡 
 

𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 = 0.0044𝑥6  −  0.0785𝑥5  +  0.5597𝑥4  −  1.9931𝑥3  +  3.6491𝑥2 −  3.4584𝑥 

+  1.8932 

𝑑𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛

𝑑𝑡
=  0.0263𝑡5 − 0.3924𝑡4 + 2.2386𝑡3 − 5.9794𝑡2 + 7.2981𝑡 − 3.4584 

𝑑𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 = [0.0263𝑡5 − 0.3924𝑡4 + 2.2386𝑡3 − 5.9794𝑡2 + 7.2981𝑡 − 3.4584]𝑑𝑡 

Utilising the equation above in 𝑨 =
𝟏

𝟐
∮ (𝒙 𝒅𝒚 − 𝒚𝒅𝒙)

𝒄
 

When f(x) and g(x) are converted to parametric equations, it makes it suitable to be used in 

𝑨 =
𝟏

𝟐
∮ (𝒙 𝒅𝒚 − 𝒚𝒅𝒙)

𝒄
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The figure denotes f(x)(blue) and g(x) 

(red) and it shows the counter clockwise 

direction of the closed loop. 

The integral of f(x) and g(x) were used 

according to their parametric equation 

(In terms of f(t) and g(t)). The integral of 

both the equations were added to give 

the area of Madagascar. The area of 

Madagascar gives the area between the 2 

curves and it equals to the sum of the two areas A1 and A2. 

𝑨 =
𝟏

𝟐
∮(𝒙 𝒅𝒚 − 𝒚𝒅𝒙)

𝒄

 

𝐴1 =
1

2
∫ 𝑥𝑑𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 − 𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑑𝑥

5.392

0.176

=

=  
1

2
( ∫ 𝑥𝑑𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 − ∫ 𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑑𝑥

5.392

0.176

)

5.392

0.176

 

∫ 𝑥𝑑𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 =  ∫ (𝑡)(

5.392

0.176

5.392

0.176

0.0263𝑡5 − 0.3924𝑡4 + 2.2386𝑡3 − 5.9794𝑡2 + 7.2981𝑡

− 3.4584)𝑑𝑡 =  −0.5904 

∫ 𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑑𝑥

5.392

0.176

= (0.0044𝑥6  −  0.0785𝑥5  +  0.5597𝑥4  −  1.9931𝑥3  +  3.6491𝑥2 −  3.4584𝑥 

+  1.8932)𝑑𝑡 =  −382.1264 

1

2
( ∫ 𝑥𝑑𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 − ∫ 𝑦𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑑𝑥 

5.392

0.176

) =  
1

2
(−0.5904 + 382.1264) = 190.768

5.392

0.176

 

∴ 𝐴1 = 190.768 

𝐴2 =
1

2
∫ 𝑥𝑑𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 − 𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑑𝑥

5.392

0.176

=  
1

2
( ∫ 𝑥𝑑𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 − ∫ 𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑑𝑥

5.392

0.176

)

5.392

0.176

  

∫ 𝑥𝑑𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 =  ∫ (𝑡)(

5.392

0.176

5.392

0.176

− 0.0019𝑡5 + 0.1348𝑡4 − 1.3182𝑡3 + 4.6415𝑡2

− 6.6689𝑡 + 3.1587)𝑑𝑦 =  −45.04273 



12 
 

∫ 𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑑𝑥

5.392

0.176

= (−0.0003𝑥6  +  0.0270𝑥5  −  0.3296𝑥4  +  1.5472𝑥3  −  3.3344𝑥2  +  3.1587𝑥 

+  1.0494)𝑑𝑦 = 310.7124 

1

2
( ∫ 𝑥𝑑𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 − ∫ 𝑦𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑑𝑥

5.392

0.176

)

5.392

0.176

=  
1

2
(−45.04273 − 310.7124)

= −181.7822 

∴ 𝐴2 = −181.7822 

∴ 𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐴1 + 𝐴2 =  190.768 − 181.7822 

∴ 𝐴𝑡𝑜𝑡𝑎𝑙 =   8.9858 𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡𝑠 

Therefore, the value of the of the area of Madagascar from the previous section and this section is 

8.2592 square units and 8.8569 square units respectively. The average of both the areas is: 

8.9858 + 8.4592

2
= 8.7225 𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡𝑠 

In order to reduce errors and to improve accuracy an average of the 2 values is taken. 

Scaling the values to find the actual area of the graph 

 

 

 

 

 

Antanarivo (Capital of Madagascar) and Toamasina are 2 cities in Madagascar. The actual 

distance between the two cities is 214.85 km. The figure illustrates how the 2 points C and D 

are placed at Antanarivo and Toamasina respectively. C (2.74, 0.69) and D (3.32, 0.04) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

=  √(3.32 − 2.74)2 + (0.04 − 0.69)2 = 0.871 𝑢𝑛𝑖𝑡𝑠 

So distance between the two cities on the map is 0.871 units.  

∴ 𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑚𝑎𝑝 =
214.852

0.8712
 × 8.7225 = 549363.09 square kilometres  

 Distance Area 

Map 0.871 units 8.7225 square units 

Actual 214.85 km 549363.09 square kilometres 
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Limitation 

Though the theorem may give an answer close to the actual value, it’s not completely 

accurate. The actual area of Madagascar is 587,041 km², however we computed it to be 

549363.09 km². These errors have occurred due to the errors that were created during 

regression. The points plotted during regression were very thick and large creating chances 

of error as the boundary did not pass through the centre of the plotted point. The R2 value 

wasn’t equal to 1. Those were only line of best fit and weren’t in the exact shape of the 

boundary causing further errors. These are the different factors that caused the answer and 

the actual area to be different. 
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